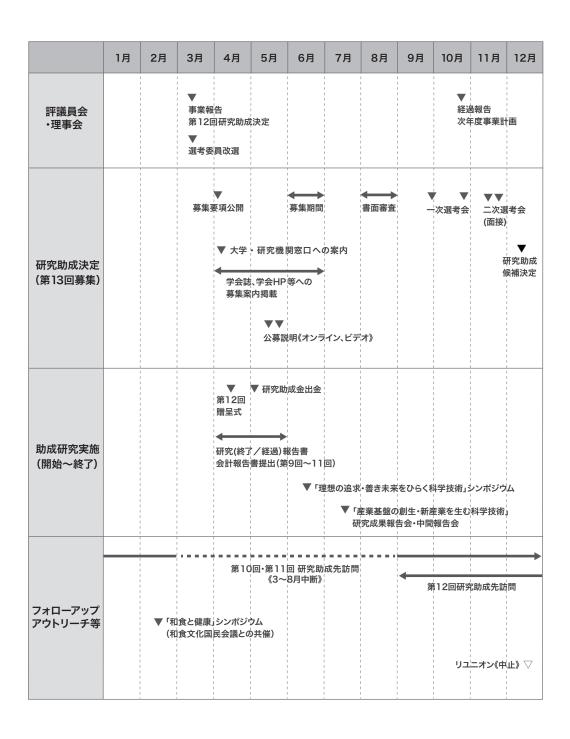


一般財団法人キヤノン財団 第14期事業報告書

(2021年1月1日から2021年12月31日まで)

第14期事業報告書 **I N D E X**


当年概況:年間活動実績01
当年概況:年間活動実績・・・・・・・・・・・・・・02
研究助成事業概要 · · · · · · · · · · · · · · · · · · ·
2021年度募集「善き未来をひらく科学技術」プログラム概要・・ 04
2021年度募集「新産業を生む科学技術」プログラム概要・・・・ 05
研究助成事業概要(2018年度以前募集) · · · · · · · · · · · · · 06
研究助成活動
今年度募集•選考研究助成 · · · · · · · · · · · · · · · · · · ·
第 13回 研究助成募集 ・・・・・・・・・・・・・・・ 08
募集結果・・・・・・・・・・・・・・・・・09
選考結果・・・・・・・10
今年度採択研究助成・・・・・・・・・・・・]]
第12回研究助成・・・・・・・12
第12回研究助成金贈呈式・・・・・・・・・・13
今年度終了研究助成・・・・・・・・・・ 14
助成研究の状況 / 成果および報告会の開催・・・・・・・・ 15
第9回「理想の追求」「善き未来をひらく科学技術」シンポジウム・・16
第9回「産業基盤の創生」研究成果報告会プログラム ・・・・・ 17
知財財産講習会・アウトリーチ(外部向け講演会、出版)・・・・・ 18
広報活動 ・・・・・・・・・ 19
リユニオン 20
過去からの研究助成実績・・・・・・・・・・ 21
第1回 (2010年) 研究助成先・・・・・・・・・22
第2回 (2011年) 研究助成先 23
第3回 (2012年) 研究助成先 24
第4回 (2013年) 研究助成先・・・・・・・・・・・25
第5回 (2014年) 研究助成先26
第6回 (2015年) 研究助成先・・・・・・・・・・27
第7回 (2016年) 研究助成先 28
第8回 (2017年) 研究助成先 29
第9回 (2018年) 研究助成先・・・・・・・・・・30
第10回 (2019年) 研究助成先 31
第11回 (2020年) 研究助成先 32
第12回 (2021年) 研究助成先 · · · · · · · · 33
採択実績推移・・・・・・・34
会計報 · · · · · · · · 35
正味財産増減計算書 ・・・・・・・・・・36
貸借対照表 37
キヤノン財団 概要 ······ 38
設立趣意・・・・・・・・・・・・39
ビジョン/ミッション ・・・・・・・40
財団概要・・・・・・41
評議員・理事・監事 一覧・・・・・・・・・・・・42

当年概況:年間活動実績

当年概況:年間活動実績

第14期(2021年)活動経過報告

研究助成事業概要

2021年度募集 「善き未来をひらく科学技術」プログラム概要

「善き未来をひらく科学技術」プログラム概要

善き未来につながる新しい価値の創出に必要な科学知識を獲得する研究、およびその展開を図る 基礎技術研究に対して助成を行う。

これまで人類は、直面する社会の様々な課題に対して、新しい技術やアイデアで解決を図ってきた。 しかしながら、その解決の先には不都合な課題が生まれていることも否定できない。善き未来社会を 実現するためには、過去の延長線上にない、人類にとって本当に幸福な未来(善き未来)の洞察から 導き出した未来の価値設計、課題の解決が重要といえる。

善き未来は予測するものではなく、構想し、確固たる意志を持って切り拓いていくべきものだと考える。 本プログラムでは、未来社会に予見される新しい課題を発見し解決するような、革新的な知識、知恵、 情報、技術などを獲得する科学技術研究を募集する。まだ世の中で注目されていない独創的な視点や 特異な発想に基づいた研究を支援する。

助成金額:1件あたり申請総額の上限・・3000万円

採択件数:3件程度 **助成期間**:原則3年間

助成対象:日本国内の大学、大学院、高等専門学校、公的研究機関等に勤務する研究者 選考方法:キヤノン財団選考委員による一次選考(書類選考)および二次選考(面接)

「善き未来をひらく科学技術」選考委員			(五十音順)
委員長	大垣 眞一郎	東京大学 名誉教授	
委員	有本 建男	政策研究大学院大学 客員教授、科学技術振興機構 上席フェロー	
	喜連川 優	国立情報学研究所 所長、東京大学 生産技術研究所 教授	
	所 眞理雄	オープンシステムサイエンス研究所 代表取締役社長	
	西澤 直子	石川県立大学 学長	
	安岡 善文	東京大学 名誉教授	

2021年度募集 「新産業を生む科学技術」プログラム概要

「新産業を生む科学技術」プログラム概要

新産業の実現につながる新しい価値の創出をめざし、そのために必要な技術を確立する研究、および その基礎となる科学技術研究に対して助成を行う。

科学技術には、産業構造を大きく変え、時にこれまで実現不可能と思われた社会の実現を可能にする力がある。今日の人工知能や、IoT、ビッグデータ、等はその一例と言えるでしょう。将来にわたり日本が強い産業力を持ち続けるためには、そうした産業構造の変革をおこすような新しい科学技術を生み発展させることが必要となる。

本プログラムでは、次の時代をリードする新産業に必要な、これからの社会の豊かさを実現するための、要素技術の確立、機構・機序の解明、あるいはシステムを構成させる革新的な科学技術研究を募集する。研究者自身の自由な発想をもとにした独創的な研究、未知の分野や未開発の技術を切り拓く挑戦的な研究を支援する。

助成金額: 1件あたり申請総額の上限・・2000万円

採択件数: 10件程度 **助成期間**: 原則3年間

助成対象:日本国内の大学、大学院、高等専門学校、公的研究機関等に勤務する研究者 選考方法:キヤノン財団選考委員による一次選考(書類選考)および二次選考(面接)

「新産業	を生む科学技術	杭」選考委員 (五十音順)
委員長	長田 義仁	理化学研究所 客員主管研究員、北海道大学 名誉教授
미국무트	安藤 功兒	産業技術総合研究所 名誉リサーチャー
副委員長	片岡 一則	川崎市産業振興財団 ナノ医療イノベーションセンター センター長 東京大学政策ビジョン研究センター 特任教授
	荒川 薫	明治大学 総合数理学部長、教授
	大津 敦	国立がん研究センター東病院 院長
	大島 まり	東京大学 生産技術研究所 教授
	大竹 尚登	東京工業大学 科学技術創成研究院 教授
	大和田野 芳郎	再生可能エネルギー協議会 理事長、福島ハイテクプラザ 所長
委員	柏野 牧夫	NTTコミュニケーション科学基礎研究所 柏野多様脳特別研究室長 NTTフェロー
	岸田 晶夫	東京医科歯科大学 生体材料工学研究所 教授
	小長井 誠	東京都市大学 総合研究所 特任教授、東京工業大学 名誉教授
	中條 善樹	京都大学 名誉教授
	深水 昭吉	筑波大学 生存ダイナミクス研究センター 教授
	藤田 静雄	京都大学 名誉教授

研究助成事業概要(2018年度以前募集)

研究助成プログラム「産業基盤の創生」

日本の強い産業を更に強化する、あるいは新たな産業を興すことによって経済発展を促すような科学技術分野にあって、独創的、先駆的、萌芽的な研究を募集する。このような分野として、ICT・エレクトロニクス・ロボティクス、健康・医療・生命科学、バイオテクノロジー、環境・資源・エネルギー、マテリアル・デバイス・プロセス、サービスサイエンスがあげられる。また、社会的に複雑で難しい課題を解決するために、分野間の知的な触発や融合を図る挑戦的な新興・融合テーマなども対象として含める。日本の経済発展には地域の活性化が不可欠。キヤノン財団は特に地域の活性化に貢献する研究を重点的に支援する。地方に位置する大学等の研究を支援するとともに、中央に位置する大学等の研究であっても地域の活性化を目指す研究について支援する。

経済発展を促すような科学技術分野

ICT・エレクトロニクス・ロボティクス 健康・医療・生命科学 マテリアル・デバイス・プロセス バイオテクノロジー 環境・資源・エネルギー サービスサイエンス

研究助成プログラム「理想の追求」

このプログラムでは「Frontier、Welfare、Sustainability」の視点からキヤノン財団が毎年研究課題を提示する。この研究課題にグローバルな視点から挑戦する先駆的で独創性のある研究プロジェクトを募集する。2019年度の研究課題は昨年に引き続き「食に関する研究」。食に関する研究はいるいるな観点から、今見直されるべき時に来ている。本プログラムでは、次のような課題に向けて取り組む研究プロジェクトを助成の対象とする。

食に関する研究

飢餓と飽食 食の安全保障 第6次産業化 食の文化と健康、美味しさ 食の安全性と流通 研究助成活動 今年度募集·選考研究助成

第13回研究助成募集

(1)募集および選考の日程

1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 募集要項 「善き未来をひらく科学技術」 公開 募集期間 募集 「新産業を生む科学技術」 募集期間 ▼ 大学・研究機関窓口への案内 財団HP、学会誌、学会HP、 研究助成サイトへの掲載 案内 ▼ オンライン公募説明会(2回) 研究報告ビデオ公開 書面審査 二次選考会 一次選考会 (面接) 選考 研究助成 候補決定

第13回研究助成(募集・選考)活動経過

(2)募集要項の公開

4月に両プログラムの募集要項を公開した。

(3)学会、公的研究機関への案内

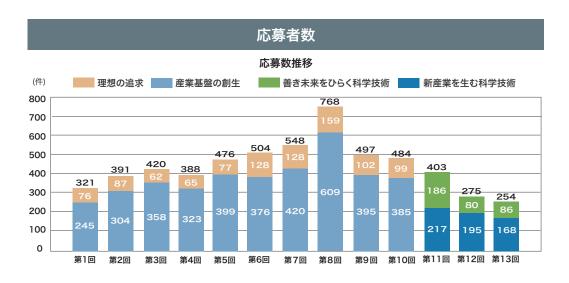
学会誌・学会ホームページへの募集要項の掲載、学会会員への募集案内メール配信を依頼した。 またJSTサイエンスポータル等へ募集案内の掲載を依頼した。依頼した機関数は、34機関であった。 大学及び公的研究機関の助成担当窓口に対しては、当財団より募集案内のメールを配信した。 配信先は164機関であった。

(4)公募説明会の実施

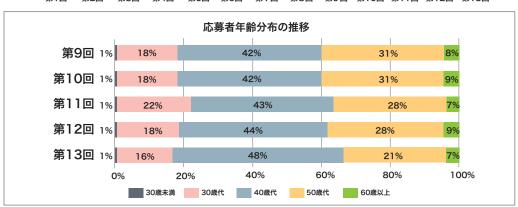
第11回から新しくなった研究助成プログラムへの理解をより深めていただき、新しい価値創出につな がる挑戦的な研究提案が増えることを狙いとして、公募説明会をオンラインで実施した。2022年に開催 回数を増やし、より多くの研究者へ直接説明する機会を設ける予定である。

募集結果

(1)概要


各プログラムの応募結果は以下の通りであった。

■「善き未来をひらく科学技術」 ・応募数:86件 ・平均年齢:48.8歳 ■「新産業を生む科学技術」 ・応募数:168件 ・平均年齢:45.7歳


(2)昨年までとの比較(2プログラム合計)

■ 2021年 (善き未来をひらく科学技術、新産業を生む科学技術) ・応募数:254件・平均年齢:46.7歳

■ 2020年(善き未来をひらく科学技術、新産業を生む科学技術) ・応募数:275件・平均年齢:47.1歳

選考結果

(1)選考結果

応募締め切り後、書面審査、一次選考会、二次選考会を経て助成候補が決定した。 助成候補については、選考結果報告書を作成し、2021年12月に理事長に提出した。 最終決定は2022年3月の理事会の決議による。

「善き未来をひらく科学技術」

●助成候補件数:4件(助成総額 9,000万円)

●助成候補者平均年齢:52.5歳

「新産業を生む科学技術」

●助成候補件数:11件(助成総額 2億円)

●助成候補者平均年齢:43.5歳

研究助成活動 今年度採択研究助成

第12回研究助成

第12回研究助成の決定

2021年3月18日の理事会において、選考委員会より提出された第12回研究助成候補が原案通り承認され、研究助成先が決定した。

- ●「善き未来をひらく科学技術」研究助成プログラム 4件(総額9,500万円)
- ●「新産業を生む科学技術」研究助成プログラム 11件(総額2億160万円)

「善き未芸	来をひらく科学技術」研究助	成	(五十音順)
氏名	所属機関(申請時) 職位	研究テーマ	助成金(万円)
大隅 典子	東北大学 教授	継精子エピゲノム情報の理解と次世代の健康への展開	2,000
西島 謙一	名古屋大学 教授	遺伝子改変鶏を利用した新規ワクチン生産プラットフォーム	2,500
宮成 悠介	金沢大学 准教授	転写プログラムの理解と応用	2,000
若山 照彦	山梨大学 教授	未来への財産である動物遺伝子資源を永久に保存する技術の開発	3,000

「新産業を	生む科学技術」研究助成		(五十音順)
氏名	所属機関(申請時) 職位	研究テーマ	助成金(万円)
天野 薫	東京大学 教授	スマートデバイスを用いたアルファ波計測技術の開発とその応用	2,000
勝見 英正	京都薬科大学 准教授	セリン修飾を用いた腎臓への新規薬物送達技術に基づく腎疾患治療	2,000
川波 肇	産業技術総合研究所 上級主任研究員	ギ酸からの高圧水素製造技術と二酸化炭素回収と利用技術の開発	1,400
櫻井 武	筑波大学 教授	冬眠様状態を誘導する神経機構の研究と応用への展開	2,000
鈴木 左文	東京工業大学 准教授	テラヘルツレーダーを利用した新たなヒューマンインターフェース	1,400
鷹尾 祥典	横浜国立大学 准教授	宇宙産業革命を担う超小型衛星船団に不可欠なマイクロ推進機	1,400
田中 克典	東京工業大学 教授	乳がん手術を改革する術中迅速Click-To-Sense診断	2,000
中川 誠司	千葉大学 教授	"からだで聞く"超音波を利用したコミュニケーション機器の開発	2,000
野崎 達生	海洋研究開発機構 グループリーダー代理	海底熱水鉱床における金の異常濃集機構の解明と金回収技術の開発	2,000
森 健	九州大学 准教授	抗体医薬の問題を解決し、これを代替する新しい医薬の開発	2,000
森 英毅	長崎医療センター 医師	舌表面画像の深層学習解析による急性虫垂炎の新規診断法の開発	1,960

第12回研究助成金贈呈式

第12回研究助成金贈呈式

2021年4月16日に、「第12回研究助成金贈呈式」を行い、今回受領する助成研究者およびその関係者、評議員、理事、監事、選考委員等合わせて61名が参加した。新型コロナウィルス感染が拡大する中、出席者の安全確保および感染拡大防止の観点から初めてのオンライン開催とした。

贈呈式では、はじめに御手洗冨士夫評議員会議長のお祝いの挨拶があり、「今年もまた大変競争率の高い中、難関を突破して決定した研究テーマには大きなイノベーションが期待されます。3年後に出てくる研究成果、さらにその先の大きな発展が楽しみです。本日を一つの出発点として、これからも夢のあるアイデアに挑戦していくことを期待しています。」と研究者を激励した。

続いて吉川弘之理事長からは、「現在、新型コロナウィルスの感染状況が1年以上も続いており、今後の予測もたたない中、研究者の皆さんは大変な苦労をしながら研究を続けていると思います。若い皆さんの英知と熱意、そして勇気で困難を克服し、これから研究者としての大きな構想の第一歩を踏み出してください。」と励ましの言葉を述べられた。

その後、「善き未来をひらく科学技術」大垣眞一郎選考委員長、および「新産業を生む科学技術」長田義仁選考委員長から選考講評と助成研究者への期待の言葉が述べられた。

例年はこの後、贈呈証の授与を行うが、オンライン開催のため贈呈証は事前に助成研究者に郵送した。 続いて全受領者が順に抱負を述べ、御手洗評議員議長から一人一人へお祝いの言葉があり、最後に 吉川理事長より全体を総括しての期待と激励のメッセージが述べられた。

その後、第4回助成先である京都大学の平山朋子教授より「摩擦と潤滑の謎に迫る-機械の更なる 高効率化を目指して」と題した講演があった。最後に議長、理事長、選考委員長と今回の助成研究者 全員の集合記念撮影をもって閉式した。

研究助成活動 今年度終了研究助成

助成研究の状況 / 成果および報告会の開催

助成研究の終了

2021年3月に「理想の追求」プログラム (研究期間3年) の第9回研究助成4件のうち3件が研究を終了した。1名の研究者は、コロナウィルス感染拡大の影響で予定通りに研究を進捗させることが困難なため、1年間期間延長した。

また、同じく2021年3月に「産業基盤の創生」プログラム (研究期間2年) の第10回助成研究12件のうち、3件が研究を終了した。9名の研究者は、コロナ禍の影響で予定通りに研究を進捗させることが困難なため、1年間期間延長した。

終了した6件は成果報告書が提出され、冊子にまとめるとともに、財団ホームページに掲載した。

第9回「理想の追求」「善き未来をひらく科学技術」シンポジウム

2021年6月22日(火)、ステーションコンファレンス東京において、第9回「理想の追求」「善き未来をひらく科学技術」シンポジウムを開催した。コロナウィルス感染状況を鑑み、会場の参加人数を抑えるため、オンラインと会場の併用開催とした。オンライン併用により、多くの方に参加いただき、助成研究者、その関係者、理事長および理事、選考委員、キヤノン関係者等合わせて参加人数は94名となった。

はじめに研究が終了した第9回助成3件の研究成果報告を行い、続いて第10回と第12回の計8件の研究経過報告、最後に第11回の研究中間報告を行った。会場・オンライン双方から、参加された選考委員の先生方の鋭い視点の質疑、アドバイスがあり、活発な議論が交わされた。シンポジウム全体を通じて、選考委員はじめ多くの出席者からの質問・意見と共に、活発な議論が交わされた。すべての研究報告の後、大垣選考委員長からの全体講評、また吉川理事長からの閉会の挨拶で報告会を締めくくった。

第9回「産業基盤の創生」研究成果報告会プログラム

2021年7月14日(水)、ステーションコンファレンス東京において、キヤノン財団第10回「産業基盤の創生」「新産業を生む科学技術」研究成果報告会・中間報告会をオンラインで開催した。

本研究成果報告会は、今までは助成期間が終了した研究者からの成果報告のみを行っていた。第11回よりプログラムが新しくなり助成期間が3年となったことに伴い、今回は2年目(第11回)の研究助成対象11名の中間報告も併せて行う形とした。研究を進める中で明らかとなる課題や問題点を助成期間の半ばで明らかにし、期間後半の道標となる議論を行うことを目的としている。

当初は会場開催を予定していたが、コロナウィルス感染状況を鑑み、ビデオ配信による事前の研究内容報告を行い、報告会当日は質疑応答を主体とするオンライン形式で実施した。

助成研究が終了した3件の研究成果と中間報告11件の報告ビデオを事前に(6月29日から7月14日) オンデマンドで配信し、研究者・共同研究者の他、理事長、理事、選考委員、キヤノン関係者等合わせて 161人が視聴した。

その後7月14日に開催された報告会には、会場から選考委員長を含めた座長を務める選考員5名、オンラインにて研究者代表者・共同研究者、理事、選考委員41名が参加した。14名の研究者が順番に登場し、選考委員からの質問・アドバイスに対し、回答・議論を行った。事前に時間をかけてビデオを見ていただいたこともあり、深いレベルの質疑応答がなされ、活発な議論がなされた。

第9回

「理想の追求」「善き未来をひらく科学技術」シンポジウム

開催日:6月22日(火)

方 法:会場*とオンラインの併用開催 *会場はステーションコンファレンス東京

報告者:第9回~第12回の研究代表者

参加者:理事長、理事、選考委員、キヤノン関係者、他 合計94名

【 開会挨拶 】 清田 慶子 キヤノン財団事務局長

第1部 研究成果報告

■ 食と腸内細菌により形成される腸内環境の理解と健康科学への展開 國澤 純(医薬基盤・健康・栄養研究所)

- 土を肥やす新たな微生物基盤の解明 妹尾 啓史(東京大学)
- 接木技術革新による放棄土壌の再活用プロジェクト 野田口 理孝(名古屋大学)

第||部 研究経過報告

- 薬に過度に依存しない畜産物の健全育成システムの開発 伊藤 幸博(東北大学)
- 地下茎雑草の強みを逆手に取る画期的雑草防除法の開発 経塚 淳子(東北大学)
- 藻類動物細胞共生リサイクル培養による革新的食料生産法の確立 清水 達也(東京女子医科大学)
- 健康な食事を化学物質なしで満足な美味しさに変える電気味覚技術 宮下 芳明(明治大学)
- 継精子エピゲノム情報の理解と次世代の健康への展開 大隅 典子 (東北大学)
- 遺伝子改変鶏を利用した新規ワクチン生産プラットフォーム 西島 謙一(名古屋大学)
- 転写プログラムの理解と応用 宮成 悠介(金沢大学)
- 未来への財産である動物遺伝子資源を永久に保存する技術の開発 若山 照彦(山梨大学)

第Ⅲ部 研究中間報告

- 非認知能力の育成環境の解明による人の社会的能力の向上 大森 隆司(玉川大学)
- 超原子機能を利用した人工元素の創製 神戸 徹也 (東京工業大学)
- 侵害刺激受容体と農薬標的受容体から導く害虫防除の新戦略 曽我部 隆彰(自然科学研究機構生理学研究所)

【選考委員長講評】 大垣 眞一郎 選考委員長

【 閉会挨拶 】 吉川 弘之 キヤノン財団理事長

第9回

「産業基盤の創生」研究成果報告会プログラム

開催日:7月14日(水)

方 法:会場*とオンラインの併用開催 *会場はステーションコンファレンス東京

研究報告はビデオによる事前のオンデマンド配信:6月29日~7月14日 当日は質疑のみ実施

報告者:第10回、第11回の研究代表者 参加者:理事、選考委員 合計41名

【 開会挨拶 】 清田 慶子 キヤノン財団事務局長

10回「産業基盤の創生」研究成果報告会 座長: 安藤 功兒(産業技術総合研究所)

- 金属酸化物スピン軌道エレクトロニクスの開拓 安藤 和也 (慶應義塾大学)
- 腸内細菌を狙った害虫防除技術の基盤創出 伊藤 英臣(産業総合研究所)
- ドップラ及び多重散乱データの双方向処理による多元的人体検出法 木寺 正平(電気通信大学)

「新産業を生む科学技術」中間報告会

材料関係1 座長:安藤 功兒(産業技術総合研究所)

- 半導体発光冷却素子実現に向けたフォトンリサイクル現象の評価 小島 一信(東北大学)
- ナノ構造・共振器導入による希土類添加半導体の高輝度・多機能化 舘林 潤(大阪大学)

材料関係2 座長: 長田 義仁(理化学研究所)

- ナノワイヤ蛍光体による偏光白色LEDの開発 石川 史太郎 (愛媛大学)
- 標的分子を吸着・放出する動的分子認識ゲルの創成 宮田 隆志 (関西大学)

医療・生命科学関係1 座長: 片岡 一則(ナノ医療イノベーションセンター)

- 膜タンパク質合成が拓く創薬新技術「ミラーイメージ創薬」 大高 章 (徳島大学)
- 転写開始点の光操作により実現する革新的タンパク質局在制御技術 松下 智直 (京都大学)

デバイス関係 座長: 荒川 薫(明治大学)

- 空中映像産業の基盤技術としての建築調和型空中像光学系の構築 小泉 直也(電気通信大学)
- 光電場利用社会実現のための光ファンクションジェネレーター開発 吉井 一倫(徳島大学)
- 大量細胞集団を超網羅的に問診するロボットの実現 太田 禎生(東京大学)

医療・生命科学関係2 座長: 岸田 晶夫(東京医科歯科大学)

- 腸内リボ核酸を撲滅して骨折のない世界を実現する 丸山 健太 (生理学研究所)
- がん組織の神経を操作してがんを抑制するがん神経医療の創出 神谷 厚範 (岡山大学)

【 選考委員長講評 】 長田 義仁 選考委員長

知的財産講習会・アウトリーチ(外部向け講演会)

知的財産講習会

2017年度より、研究助成先の研究者に対する知的財産分野での講習を開始し、今年4回目を予定していたが、新型コロナウィルス感染拡大防止のため昨年に引き続き中止とした。

アウトリーチ(外部向け講演会)

「理想の追求」で助成研究している「食に関する研究」について、2018年より「和食と健康」と題した外部向けのシンポジウムを一般社団法人和食文化国民会議(和食会議)と共催している。

2021年は、新型コロナウィルス感染拡大防止のため オンラインでの開催となった。

■ 2月28日(日) オンライン開催 副題「食の恵みで健康に ~賢い「食」を考える~」 講演者:2名

佐藤 健司 京都大学大学院農学研究科 教授 落合 芳博 東北大学大学院農学研究科 教授 参加者:293名

広報活動

(1)キヤノン財団ホームページ更新

今期、新たに発信した情報は以下となる。

① キヤノン財団事業報告書

第13期キヤノン財団の事業活動として、研究助成プログラムの概要、選考委員、研究助成活動(募集、応募状況、選考過程等)、贈呈式、「理想の追求・善き未来をひらく科学技術」シンポジウム、「産業基盤の創生・新産業を生む科学技術」研究成果報告会、会計報告等について詳細に報告した。

②助成先だより

助成研究の概要、研究のその後の発展状況、研究者になろうと思ったきっかけ、助成期間を通じた感想、今後の夢などについて、助成先研究者へのインタビューをもとに制作した。2021年は2名へのインタビューを実施し、ホームページに掲載した。これまでに合計14名が掲載されている。

名古屋大学 芦苅 基行 教授/博士(農学) 「理想の追求」第7回助成

Theme

収量を増やすイネの品種育成 一食料危機から地球を救う―

芦苅 基行

名古屋大学 生物機能開発利用研究センター 生命農学研究科 教授/農学博士

東京大学 岩崎 渉 教授/博士(科学) 「理想の追求」第4回助成

Theme

太古、生命が見た光を現代に再現 一口マンある生命の起源にせまる―

岩崎 渉

東京大学 大学院新領域創成科学研究科 教授/博士 (科学)

リユニオン

リユニオン

この活動は、これまで財団で助成してきた研究者、選考委員などの交流を図り、研究そのものの発展に加え、異分野の研究者間での新たな研究活動などが生まれることなどを期待したものである。新型コロナウィルス感染拡大防止のため昨年に引き続き、今年も中止とした。

過去からの研究助成実績

第1回(2010年)研究助成

研究助成プ	プログラム「産業基盤の創生」	(所属機関・職位は採択時のもの 五	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
氏名	所属機関 職位	研究テーマ 助成	金(万円)
安坂 幸師	名古屋大学 助教	中空多層フラーレンの光・電子デバイスの開発	1,900
市浦 英明	高知大学 准教授	界面重合反応を活用した新しいナノカブセル・ナノファイバー・ ナノ多孔合成法とその特徴を有するシート状素材の開発	1,000
岡田 健一	東京工業大学 准教授	CMOS技術を用いたミリ波帯超高速スケーラブル無線回路技術の研究	1,200
金子 真	大阪大学 教授	マイクロ液滴によるダイナミックアクティブセンシング	1,500
河野 行雄	理化学研究所 專任研究員	固体ワンチップによる広帯域テラヘルツ分光器の開発	1,700
栗原 正人	山形大学 准教授	100°Cの壁を越える低温焼結性銀超微粒子の高効率・簡便製造と基材適合性	1,200
黒田 俊一	名古屋大学 教授	ナノメディシンの生体内ピンポイント送達を可能にする ヒト由来ウイルス外皮タンパク質コーティング技術の開発	2,000
小池 英樹	電気通信大学 教授	デジタルスポーツ創生のための基礎研究	1,500
佐々木 健夫	東京理科大学 准教授	光誘起電界による分子運動の変調に基づく動的ホログラムの形成	1,000
祖山 均	東北大学 教授	流動キャビテーションによるラジカルの制御	2,000
中村 龍平	東京大学 助教	自然共生型の高効率光エネルギー変換システムの構築	2,000
松尾 吉晃	兵庫県立大学 准教授	水素貯蔵用シルセスキオキサン架橋型ピラー化炭素の創生	1,000
森田 靖	大阪大学 准教授	有機分子を活物質に用いた革新的高性能二次電池の開発	2,000

研究助成プログラム「理想の追求」		(所属機関・職位は採択時	寺のもの 五十音順)
氏名	所属機関 職位	研究テーマ	助成金(万円)
岩淵 聡文	東京海洋大学 教授	水中文化遺産研究への海洋工学の応用	2,000
北野 宏明	特定非営利活動法人 システム・パイオロジー研究機構 会長	サンゴ-共生藻におけるロバストネス・トレードオフと気候変動	5,000
佐藤 克文	東京大学 准教授	動物目線による海洋環境モニタリング	3,000

第2回(2011年)研究助成

研究助成プロ	コグラム「産業基盤の創生」	(所属機関・職位は採択時の	もの 五十音順)
氏名	所属機関 職位	研究テーマ	助成金(万円)
安東秀	東北大学 助教	走査ナノダイヤモンド磁気検出器プローブによる単一スピン検出	1,500
今里 浩子	一般財団法人ファジィシステム研究所 主任研究員	誘電泳動現象を用いた白血病細胞の分離・同定	1,700
小椋 俊彦	産業技術総合研究所 主任研究員	高分解能三次元リアルタイム軟X線顕微鏡の開発	1,700
韓立彪	産業技術総合研究所 グループ長	革新的有機へテロ原子機能材料の創製	1,900
佐治木 弘尚	岐阜薬科大学 教授	機械エネルギーで水から水素を製造する次世代エネルギーシステム	2,000
庄司 暁	大阪大学 助教	2光子加工法を駆使したナノ領域でのポリマーの力学特性の解明	1,100
田邉 孝純	慶應義塾大学 専任講師	微小光共振器による位相制御された光周波数コム光源の開発	1,500
東口 武史	宇都宮大学 准教授	次々世代半導体リソグラフィー用波長6.7 nm極端紫外光源の開発	1,900
細谷 浩史	広島大学 教授	ミドリゾウリムシ共生藻が産生する糖類の利用に関する研究	2,000
村越 敬	北海道大学 教授	電子移動機能アトムサイトの室温構造制御	1,500
森川 浩安	大阪市立大学 講師	超音波速度の温度依存性を利用した内臓脂肪診断装置の開発	1,700
吉原 利忠	群馬大学 助教	低酸素病態イメージングのための高機能りん光プローブ分子の開発	1,500

研究助成プログラム「理想の追求」		(所属機関・職位は採択時のもの 五十音順)
氏名	所属機関 職位	研究テーマ 助成金(万円)
桑田 晃	水産総合研究センター 主任研究員	未知の藻類:パルマ藻が解き明かす海洋を支える珪藻の進化 2,800
杉松 治美	東京大学 特任研究員	アジア域に棲息する小型歯クジラ類のリアルタイム音響観測ネットワークの構築 2,800
眞部 広紀	佐世保工業高等専門学校 准教授	陸海域カルスト水文系の追跡によるロボット探査とマッピング 600
御手洗 哲司	沖縄科学技術研究基盤整備機構 若手代表研究者	深海底熱水噴出域の幼生輸送と生物群集変動 3,800

第3回(2012年)研究助成

研究助成プ	ログラム「産業基盤の創生」	(所属機関・職位は採択時のも	D 五十音順)
氏名	所属機関 職位	研究テーマ	加成金(万円)
浅沼 浩之	名古屋大学 教授	医療応用を目指した人工核酸の創成	2,000
味岡 逸樹	東京医科歯科大学 准教授	ニューラルネットワークモデル検証のための神経細胞三次元培養	1,600
内山 潔	鶴岡工業高等専門学校 教授	プロトン伝導性酸化物薄膜の高性能化とその燃料電池応用	1,100
奥野 貴士	山形大学 准教授	細胞膜タンパク質機能の高感度イメージング解析技術の開発	1,400
尾崎 信彦	和歌山大学 准教授	多色量子ドットによる近赤外広帯域光源開発と医療OCTへの応用	1,200
角田直人	首都大学東京 准教授	近赤外分光法に基づく顕微領域の温度・水分同時イメージング法の開発	1,500
岸本 昭	岡山大学 教授	高信頼性耐火物への制御した気孔導入が可能な超塑性発泡法の開発	1,600
戸川望	早稲田大学 教授	グリーンITを実現する超低電力化フラットLSI自動設計技術の創生	1,600
則包 恭央	産業技術総合研究所 主任研究員	光で溶ける有機材料―再生可能な感光性有機材料の基盤技術の創出	2,000
松村 和明	北陸先端科学技術大学院大学 准教授	両性電解質高分子を利用した高次細胞構造体の凍結保存技術の開発	1,300
守友 浩	筑波大学 教授	ネットワークポリマーを用いた『カラー電池』の開発	1,300
山本 希美子	東京大学 講師	先進分子イメージングによる血管の血流感知機構の解明	2,000
渡部 平司	大阪大学 教授	界面制御に基づく超低消費電力半導体ナノエレクトロニクスの創成	1,400

研究助成プログラム「理想の追求」		(所属機関・職位は採択的	持のもの 五十音順)
氏名	所属機関 職位	研究テーマ	助成金(万円)
落合 芳博	東海大学 教授	深海魚類資源の網羅的開拓	1,000
桑江 朝比呂	港湾空港技術研究所 チームリーダー	都市型ブルーカーボン: 新たな沿岸海域炭素循環像の構築	1,000
高井 研	海洋研究開発機構 プログラムディレクター	「沖縄の深海に超巨大海底熱水鉱床を探せ」	5,000
西岡 純	北海道大学 准教授	凍る海の豊かな生態系を生み出す機構の解明	3,000

第4回(2013年)研究助成

研究助成プ	ログラム「産業基盤の創生」	(所属機関・職位は採択時のもの:	五十音順)
氏名	所属機関 職位	研究テーマ 助師	成金(万円)
有澤 光弘	北海道大学 准教授	機能性分子合成用希少元素削減・代替型ナノパーティクル触媒の開発	1,200
伊藤 公平	慶應義塾大学 教授	ダイヤモンドによる単一プロトン核スピン磁気共鳴センシング	1,800
伊藤 嘉浩	理化学研究所 主任研究員	化学拡張進化分子工学による蛍光センサー分子の構築原理の実証	1,500
王 碩玉	高知工科大学 教授	自立高齢者生活支援のためのインテリジェント・ロボットの開発	1,600
大道 英二	神戸大学 准教授	テラヘルツ磁気共鳴力顕微鏡を用いた生体分子の高分解能スペクトロスコピ	1,500
木村 崇	九州大学 教授	スピン吸収効果を用いた極微細スピンクーリングデバイスの開発	1,000
萩原 伸也	名古屋大学 特任准教授	翻訳段階で遺伝情報を変換する新規遺伝子治療法の創生	1,000
林 隆介	産業技術総合研究所 研究員	脳神経情報に基づく視覚体験の可視化技術の開発	1,300
平山 朋子	同志社大学 准教授	超低摩擦摺動メカニズム解明のための新規固液界面分析装置の開発	1,500
福田 弘和	大阪府立大学 准教授	植物工場における超高速環境パラメータ最適化手法の開発	1,700
松田 一成	京都大学 教授	革新的光電変換機能をもつオールナノカーボン太陽電池の開発	1,700
宮元 展義	福岡工業大学 准教授	層状ペロブスカイトに基づく機能性無機ナノシート液晶の開発	1,800
村田 昌之	東京大学教授	細胞質交換法を用いた「病態モデル細胞」創成と解析技術の開発	1,800

研究助成プログラム「理想の追求」 (所属機関・職位は採択時のもの 3			R時のもの 五十音順)
氏名	所属機関 職位	研究テーマ	助成金(万円)
井上 麻夕里	東京大学 助教	環境を記録する造礁サンゴの骨格成長メカニズムの解明	4,000
岩崎渉	東京大学 講師	太古、生命はどんな光を見たか	3,000
田村 岳史	国立極地研究所 助教	気候変動の鍵を握る南極の海	3,000

第5回(2014年)研究助成

研究助成プ	ログラム「産業基盤の創生」	(所属機関・職位は採択時の	ひもの 五十音順)
氏名	所属機関 職位	研究テーマ	助成金(万円)
大森 雅登	豊田工業大学 嘱託研究員	半導体ナノ細線フォトトランジスタを用いた単一光子検出器の開発	1,600
加藤 雄一郎	東京大学 准教授	カーボンナノチューブ単一光子源	1,400
式田 光宏	広島市立大学 教授	肺内部でのその場計測を可能にするカテーテルセンサの開発	1,100
白井 裕子	早稲田大学 准教授	林地内走破型伐倒マニピュレータシステムの開発	1,100
竹岡 敬和	名古屋大学 准教授	白い粒子と黒い粒子から得られる様々な色の顔料の調製	1,800
生津 資大	兵庫県立大学 准教授	近未来型低侵襲癌治療のための瞬間発熱ナノ粒子の実現	2,000
新倉 謙一	北海道大学 准教授	高活性ワクチンアジュバントのためのハイブリッドナノ粒子開発	1,810
西村 智	自治医科大学 教授	ゆらぐ生命現象の可視化デバイスの開発	2,000
根岸 雄一	東京理科大学 准教授	低コスト燃料電池を実現する高活性白金触媒の精密合成法の開発	1,400
平川 一彦	東京大学 教授	単一分子をテラヘルツ電磁波で見る技術の開拓	1,700
松浦 和則	鳥取大学 教授	環境応答性人工ウイルスキャプシドの創製	1,700
安井 武史	徳島大学 教授	非線形ギャップレス光コム分光法の開発と呼気診断への応用	1,140
山内 悠輔	物質・材料研究機構 主任研究員	電解析出法による新規ナノポーラス白金電極の開発	1,850

研究助成プログラム「理想の追求」 (所属機関・職位は採択時のもの 五十		時のもの 五十音順)	
氏名	所属機関 職位	研究テーマ	助成金(万円)
荒木 仁志	北海道大学 教授	北の海に未知なる生命と生物多様性を探る	2,000
西田 洋巳	富山県立大学 教授	海洋を漂うプラスミドDNAが生物進化に与える影響	2,000
升本 順夫	東京大学 教授	海洋4次元地図帳:モデリングと可視化のニューフロンティア	3,000
吉田 天士	京都大学 准教授	ウイルスは海洋生物多様性を創生・維持する素粒子か?	3,000

第6回(2015年)研究助成

研究助成プ	゜ログラム「産業基盤の創生」	(所属機関・職位は採択時	のもの 五十音順)
氏名	所属機関 職位	研究テーマ	助成金(万円)
阿部 洋	名古屋大学 教授	蛋白質の高効率生産法の開発	2,000
有田 稔彦	東北大学 助教	汎用樹脂とシリカ微粒子からなる高プロトン伝導セパレータの創製	1,300
飯田 琢也	大阪府立大学 准教授	ナノ/マイクロ構造の超高速光集積・検出システムの開発	1,600
岩倉 いずみ	神奈川大学 准教授	アミノ酸誘導体による希土類錯体の合成:同時多色発光材料の設計	2,000
岩瀬 英治	早稲田大学 准教授	自己修復型伸縮配線を用いたフレキシブルデバイスシート	1,000
上原 宏樹	群馬大学 准教授	延伸技術と撚糸技術の融合による超高強度繊維の創製	1,800
齊藤 博英	京都大学 准教授	RNAナノテクノロジーを活用した細胞運命の人為的制御法の開発	1,000
櫻井 敏彦	鳥取大学 准教授	がん治療を目的としたinchworm型人工核酸の創成と応用	1,600
富永 依里子	広島大学 助教	海洋光合成細菌にIII-V族半導体結晶を成長させる技術の開拓	1,900
松元 亮	東京医科歯科大学 准教授	糖応答性高分子ゲルによるインテリジェント型人工膵臓の開発	2,000
山口匡	千葉大学 教授	非観血無侵襲の超迅速センチネルリンパ節生検システムの開発	1,900
山本 倫久	東京大学 講師	グラフェンバレートロニクスデバイスの創製	1,900

研究助成フ	研究助成プログラム「理想の追求」 (所属機関・職位は採択時のも		
氏名	所属機関 職位	研究テーマ	助成金(万円)
木下 奈都子	筑波大学 助教	揮発性物質による植物間情報伝達と早期病害ストレス検出基盤構築	1,500
辻 典子	産業技術総合研究所 チーム長	伝統発酵食品の腸管免疫制御および腸-脳相関に関する研究	3,000
都築 毅	東北大学 准教授	伝統的日本食を基盤とした健康維持に有効な食事「日本食」の確立	3,000

第7回(2016年)研究助成

研究助成プログラム「産業基盤の創生」 (所属機関・職位は採択時のもの 五十音順)			
氏名	所属機関 職位	研究テーマ 助成3	金(万円)
岩崎 崇	鳥取大学 農学部 助教	ポリヒスチジンを利用した次世代育種基盤技術の創生	1,500
小西 毅	大阪大学 大学院工学研究科 准教授	量子揺らぎ制御に基づく高性能光アナログ-デジタル変換の研究	1,500
佐藤 主税	産業技術総合研究所 バイオメディカル研究部門 研究グループ長	水中のサンブルを多色観察できる走査電子顕微鏡システムの開発	1,100
菅野 公二	神戸大学 大学院工学研究科 准教授	DNAエピゲノム解析に向けた1分子表面増強ラマン分光技術	1,500
西原 禎文	広島大学 大学院理学研究科 准教授	単分子強誘電素子の開発	900
藤田 恭久	島根大学 総合理工学研究科 教授	窒素ドーブ酸化亜鉛ナノ粒子塗布型紫外線LEDの高性能化	1,400
松田修	九州大学 大学院理学研究院 助教	樹木種子の高発芽率化技術に関する研究	1,100
美川 務	理化学研究所 生命システム研究センター 専任研究員	無細胞DNA組換え系を用いた人工蛋白質創製技術の確立	1,500
向井 剛輝	横浜国立大学 大学院工学研究院 教授	メタマテリアルと量子ドットを用いた極小単一光子放出器の創出	1,000
森 初果	東京大学 物性研究所 教授	革新的有機プロト・エレクトロニクス材料およびデバイスの創製	1,400
安田 琢麿	九州大学 稲盛フロンティア研究センター 教授	究極の電荷輸送機能を指向した革新的有機半導体パラダイムの創出	1,400
山本 拓矢	北海道大学 大学院工学研究院 准教授	環状高分子を利用した新奇刺激応答型DDS材料の開発	800
米澤 徹	北海道大学 大学院工学研究院 教授	金属糊を用いた還元ガスを不要とする革新的銅接合材料	1,400

研究助成プログラム「理想の追求」		(所属機関・職位は採択時のもの 五十音順)	
氏名	所属機関 職位	研究テーマ 助成	金(万円)
芦苅 基行	名古屋大学 生物機能開発利用研究センター 教授	食糧問題軽減を目指したイネの分子育種と特性評価	2,500
栗原 新	石川県立大学 生物資源環境学部 寄附講座 准教授	食品成分の腸内細菌変換による健康増進効果の遺伝学的解析	1,700
後藤 貴文	九州大学 大学院農学研究院 准教授	牛肉生産システムの大構造改革:科学と国土をフル活用した大革新	2,300
辻 寛之	横浜市立大学 木原生物学研究所 講師	フロリゲンを活用して地球温暖化に強い作物を創るための基礎研究	1,700

第8回(2017年)研究助成

研究助成プログラム「産業基盤の創生」 (所属機関・職位は採択時のもの 五十音順)			
氏名	所属機関 職位	研究テーマ	助成金(万円)
鐘巻 将人	国立遺伝学研究所 教授	幹細胞における迅速なタンパク質発現制御技術の開発	1,500
川井 清彦	大阪大学 准教授	RNA1分子検出による癌の遺伝子点突然変異診断	1,100
黒岩 敬太	崇城大学 教授	トマト由来ステロイドアルカロイド配糖体によるプローブ材料開発	1,500
小暮 健太朗	徳島大学 教授	微弱電流薬物送達システムによる体内臓器への核酸医薬新規送達法	1,000
高橋 淳子	産業技術総合研究所 主任研究員	次世代がん治療を実現する「放射線力学療法」の基盤研究	1,500
竹井 敏	富山県立大学 准教授	ガス透過性金型を用いる医薬品材料のナノインプリント加工技術	1,500
秩父 重英	東北大学 教授	ヘリコン波プラズマエピタキシー開発とポラリトンレーザ構造形成	1,500
津田 明彦	神戸大学 准教授	音響配向エレクトロクロミックナノファイバーの創製	1,100
桧垣 匠	東京大学 特任准教授	高CO2固定植物の作出に向けた気孔エンジニアリング技術の創出	1,300
船津 高志	東京大学 教授	マイクロ液滴を利用した有用な機能性生体分子の探索・創製	1,500
馬渡 和真	東京大学 准教授	単一細胞エピゲノム解析のための基盤技術創成	1,500
湯浅 裕美	九州大学 教授	次世代MRAMへ向けた反平行磁化配列層のスピントルク発振実証	1,000

研究助成プログラム「理想の追求」		(所属機関・職位は採択時のもの 五十音順)	
氏名	所属機関 職位	研究テーマ	助成金(万円)
植松 智	千葉大学 教授	日本人と欧米人の腸内細菌叢比較とプロバイオティクス効果の解析	3,000
加藤 清明	帯広畜産大学 教授	食物アレルギーを幅広く軽減するコメの研究	2,000
小早川 高	関西医科大学 学長特命准教授	先天的恐怖活用技術の開発によるげっ歯類からの食害防止	3,000

第9回(2018年)研究助成

研究助成プログラム「産業基盤の創生」 (所属機関・職位は採択時のもの 五十音順)				
氏名	所属機関 職位	研究テーマ	助成金(万円)	
足立 典隆	横浜市立大学 教授	DNAを切らない安全な高効率ゲノム編集技術の開発	1,800	
内田 健一	物質・材料研究機構 グループリーダ	ハイスループット熱画像計測による外場駆動熱制御材料探索の革新	1,100	
大場 雄介	北海道大学 教授	高速AFMと蛍光イメージングを用いた細胞膜動態の高分解計測	1,000	
大矢 忍	東京大学 准教授	強磁性金属/半導体ハイブリッド量子スピントロニクスデバイス	1,400	
角嶋 邦之	東京工業大学 准教授	酸化物・半導体の機能を利用した大容量蓄電デバイスの研究	1,000	
片山 佳樹	九州大学 教授	がんコンパニオン診断を可能にする細胞膜抗原超高感度検出法	1,700	
北村 朗	北海道大学 助教	光ファイバー型蛍光相関分光システムの研究開発と生物応用	1,000	
竹中 充	東京大学 准教授	ゲルマニウム中赤外光集積回路を用いた革新的分子スキャナの開拓	1,200	
帯刀 陽子	東京農工大学 講師	分子性電磁ナノコイルからなるメディカルデバイスの創成	1,100	
長崎 幸夫	筑波大学 教授	放射線プロテクション機能を有するナノメディシンの開発	1,200	
廣瀬 哲也	神戸大学 准教授	シリコン太陽電池による光環境エネルギー利用システム基盤の創生	1,400	
松島 敏則	九州大学 准教授	有機無機ベロブスカイトを用いた革新的半導体デバイスの創製	1,800	
持田 智行	神戸大学 教授	金属錯体の液化に基づく光機能性液体材料の創成	1,300	
柳澤 琢史	大阪大学 教授	Deep learning と脳ビッグデータによる想起画像推定	1,500	

研究助成プログラム「理想の追求」		(所属機関・職位は採択時のもの 五十音順)	
氏名	所属機関 職位	研究テーマ 助	成金(万円)
國澤 純	医薬基盤・健康・栄養研究所 プロジェクトリーダ	食と腸内細菌により形成される腸内環境の理解と健康科学への展開	2,000
西條 雄介	奈良先端科学技術大学院大学 准教授	イネ種子微生物叢を介した種子形質及び微生物共生の制御基盤構築	3,000
妹尾 啓史	東京大学 教授	土を肥やす新たな微生物基盤の解明	1,500
野田口 理孝	名古屋大学 助教	接木技術革新による放棄土壌の再活用プロジェクト	2,500

第10回(2019年)研究助成

研究助成	研究助成プログラム「産業基盤の創生」 (所属機関・職位は採択時のもの 五十音順)				
氏名	所属機関 職位	研究テーマ	助成金(万円)		
安藤 和也	慶應義塾大学 准教授	金属酸化物スピン軌道エレクトロニクスの開拓	2,000		
和泉 慎太郎	神戸大学 准教授	体温発電を用いるバッテリレス容量結合型心電図計測システム	1,400		
伊藤 英臣	産業技術総合研究所 研究員	腸内細菌をねらった害虫防除技術の基盤創出	1,600		
伊庭 靖弘	北海道大学 准教授	あらゆる内部構造をフルカラーで捉える3Dイメージング装置開発	1,500		
川上 茂	長崎大学 教授	ネオ・エクソソームの創製	1,400		
木寺 正平	電気通信大学 准教授	ドップラ及び多重散乱データの双方向処理による多元的人体検出法	1,400		
澤本 和延	名古屋市立大学 教授	脳細胞の移動促進による再生医療技術の創出	2,000		
谷本 博一	横浜市立大学 専任講師	時空間分解能を持つ細胞内力学操作技術の開発	1,500		
坪井 泰之	大阪市立大学 教授	ナノ構造と量子効果に基づく革新的光マニピュレータの開発	2,000		
中川 明	石川県立大学 講師	オピオイド系鎮痛剤の原料テバインの大腸菌を用いた生産系の構築	1,800		
長汐 晃輔	東京大学 准教授	2次元層状へテロ構造を用いた光機能素子の実証	1,800		
山口 明彦	東北大学 助教	視触覚センサFingerVisionに基づくAI物体操作	1,600		

研究助成	プログラム「理想の追求」	(所属機関・職位は採択時のもの 五十音順)	
氏名	所属機関 職位	研究テーマ	助成金(万円)
伊藤 幸博	東北大学 准教授	薬に過度に依存しない畜産物の健全育成システムの開発	2,000
経塚 淳子	東北大学 教授	地下茎雑草の強みを逆手に取る画期的雑草防除法の開発	2,000
清水 達也	東京女子医科大学 教授	藻類動物細胞共生リサイクル培養による革新的食料生産法の確立	3,000
宮下 芳明	明治大学 教授	健康な食事を化学物質なしで満足な美味しさに変える電気味覚技術	2,000

第11回(2020年)研究助成

研究助成プ	ログラム「新産業を生む科	は学技術」 (所属機関・職位は採択時のもの) 五十音順)
氏名	所属機関 職位	研究テーマ 助	成金(万円)
石川 史太郎	愛媛大学 准教授	ナノワイヤ蛍光体による偏光白色LEDの開発	2,000
太田 禎生	東京大学 准教授	大量細胞集団を超網羅的に問診するロボットの実現	2,000
大高 章	徳島大学 教授	膜タンパク質合成が拓く創薬新技術「ミラーイメージ創業」	1,800
神谷 厚範	岡山大学 教授	がん組織の神経を操作してがんを抑制するがん神経医療の創出	2,000
小泉 直也	電気通信大学 助教	空中映像産業の基盤技術としての建築調和型空中像光学系の構築	1,000
小島 一信	東北大学 准教授	半導体発光冷却素子実現に向けたフォトンリサイクル現象の評価	1,700
舘林 潤	大阪大学 准教授	ナノ構造・共振器導入による希土類添加半導体の高輝度・多機能化	1,700
松下 智直	京都大学 教授	転写開始点の光操作により実現する革新的タンパク質局在制御技術	2,000
丸山 健太	生理学研究所 特別協力研究員	腸内リボ核酸を撲滅して骨折のない世界を実現する	2,000
宮田 隆志	関西大学 教授	標的分子を吸着・放出する動的分子認識ゲルの創成	1,800
吉井 一倫	徳島大学 特任准教授	光電場利用社会実現のための光ファンクションジェネレーター開発	2,000

研究助成プ	ログラム「善き未来をひらく科	学技術」 (所属機関・職位は採択時	のもの 五十音順)
氏名	所属機関 職位	研究テーマ	助成金(万円)
大森 隆司	玉川大学 教授	非認知能力の育成環境の解明による人の社会的能力の向上	3,000
神戸 徹也	東京工業大学 助教	超原子機能を利用した人工元素の創製	3,000
曾我部 隆彰	生理学研究所 准教授	侵害刺激受容体と農薬標的受容体から導く害虫防除の新戦略	3,000

第12回(2021年)研究助成

研究助成	プログラム「新産業を生む科学!	支術」 (所属機関・職位は採択時のも	の 五十音順)
氏名	所属機関 職位	研究テーマ	加成金(万円)
天野 薫	東京大学 教授	スマートデバイスを用いたアルファ波計測技術の開発とその応用	2,000
勝見 英正	京都薬科大学 准教授	セリン修飾を用いた腎臓への新規薬物送達技術に基づく腎疾患治療	2,000
川波 肇	産業技術総合研究所 上級主任研究員	ギ酸からの高圧水素製造技術と二酸化炭素回収と利用技術の開発	1,400
櫻井 武	筑波大学 教授	冬眠様状態を誘導する神経機構の研究と応用への展開	2,000
鈴木 左文	東京工業大学 准教授	テラヘルツレーダーを利用した新たなヒューマンインターフェース	1,400
鷹尾 祥典	横浜国立大学 准教授	宇宙産業革命を担う超小型衛星船団に不可欠なマイクロ推進機	1,400
田中 克典	東京工業大学 教授	乳がん手術を改革する術中迅速Click-To-Sense診断	2,000
中川 誠司	千葉大学 教授	"からだで聞く"超音波を利用したコミュニケーション機器の開発	2,000
野崎 達生	海洋研究開発機構 グループリーダー代理	海底熱水鉱床における金の異常濃集機構の解明と金回収技術の開発	2,000
森健	九州大学 准教授	抗体医薬の問題を解決し、これを代替する新しい医薬の開発	2,000
森 英毅	長崎医療センター 医師	舌表面画像の深層学習解析による急性虫垂炎の新規診断法の開発	1,960

研究助成	ぱプログラム「善き未来を	ひらく科学技術」 (所属機関・職位は採択	時のもの 五十音順)
氏名	所属機関 職位	研究テーマ	助成金(万円)
大隅 典子	東北大学 教授	継精子エピゲノム情報の理解と次世代の健康への展開	2,000
西島 謙一	名古屋大学 教授	遺伝子改変鶏を利用した新規ワクチン生産プラットフォーム	2,500
宮成 悠介	金沢大学 准教授	転写プログラムの理解と応用	2,000
若山 照彦	山梨大学 教授	未来への財産である動物遺伝子資源を永久に保存する技術の開	発 3,000

採択実績推移

採択実績

	「理想の追求」		「産業基盤	盤の創生」
	応募数	採択数	応募数	採択数
第1回募集	76件	3件	245件	13件
第2回募集	87件	4件	304件	12件
第3回募集	62件	4件	358件	13件
第4回募集	65件	3件	323件	13件
第5回募集	77件	4件	399件	13件
第6回募集	128件	3件	376件	12件
第7回募集	128件	4件	420件	13件
第8回募集	159件	3件	609件	12件
第9回募集	102件	4件	395件	14件
第10回募集	99件	4件	385件	12件
	「善き未来を開	引く科学技術 」	「新産業を生	む科学技術」
第11回募集	186件	3件	217件	11件
第12回募集	80件	4件	195件	11件
合計	1249件	43件	4226件	149件

会計報告

正味財産増減計算書

正味財産増減計算書

(単位:円)

2021年1月1日から2021年12月31日まで

科目	当年度	前年度	増減
1. 一般正味財産増減の部			
1. 経常増減の部			
(1)経常収益			
経常収益計	385,021,190	399,080,775	△ 14,059,585
(2)経常費用			
① 事業費	312,518,217	309,204,784	3,313,433
② 管理費	81,442,014	83,167,900	△ 1,725,886
経常費用計	393,960,231	392,372,684	1,587,547
当期経常増減額	△ 8,939,041	6,708,091	△ 15,647,132
2. 経常外増減の部			
(1)経常外収益			
経常外収益計	-	-	-
(2)経常外費用			
経常外費用計	-	-	-
当期経常外増減額	-	-	-
当期一般正味財産増減額	△ 8,939,041	6,708,091	△ 15,647,132
一般正味財産期首残高	143,689,567	136,981,476	6,708,091
一般正味財産期末残高	134,750,526	143,689,567	△ 8,939,041
Ⅱ. 指定正味財産増減の部			
① 基本財産運用益	16,169	68,600	△ 52,431
② 一般正味財産への振替額	△ 16,169	△ 68,600	52,431
指定正味財産期首残高	1,000,288,762	1,000,288,762	-
指定正味財産期末残高	1,000,288,762	1,000,288,762	-
Ⅲ. 正味財産期末残高	1,135,039,288	1,143,978,329	△ 8,939,041

貸借対照表

貸借対照表

(単位:円)

2021年12月31日現在

科目	当年度	前年度	増減
I.資産の部			
1. 流動資産			
流動資産合計	424,517,168	356,172,455	68,344,713
2. 固定資産			
(1)基本財産			
基本財産合計	1,000,288,762	1,000,288,762	-
(2) その他固定資産			
什器備品	282,750	494,932	△ 212,182
その他固定資産合計	282,750	494,932	△ 212,182
固定資産合計	1,000,571,512	1,000,783,694	△ 212,182
資産合計	1,425,088,680	1,356,956,149	68,132,531
Ⅱ.負債の部			
1. 流動負債			
流動負債合計	290,049,392	212,977,820	77,071,572
負債合計	290,049,392	212,977,820	77,071,572
Ⅲ.正味財産の部			
1. 指定正味財産			
寄付金	1,000,288,762	1,000,288,762	-
指定正味財産合計	1,000,288,762	1,000,288,762	-
(うち基本財産への充当額)	(1,000,288,762)	(1,000,288,762)	-
2. 一般正味財産	134,750,526	143,689,567	△ 8,939,041
正味財産合計	1,135,039,288	1,143,978,329	△ 8,939,041
負債および正味財産合計	1,425,088,680	1,356,956,149	68,132,531

キヤノン財団 概要

設立趣意

設立趣意

キヤノンは、「国産の高級カメラをつくろう」という大きな志を抱いた若者により1937年に企業としての歩みを始めました。その進取の気性の精神は今日まで受け継がれ、技術で人類の幸福に貢献し続ける企業を目指して発展してまいりました。

キヤノンはこれまでも、人々の生活を豊かにする製品やサービスを提供するとともに、さまざまな分野で社会・文化支援活動を展開してまいりました。この度、これらの活動に加えて、より一層社会に対し恩返しをしたいという強い気持ちから、創業70周年を記念し、キヤノン財団を設立することといたしました。

現在、情報通信を始めとする技術革新により、急速な経済のグローバル化、情報のネットワーク化が 実現され、我々の生活はこれまでになく豊かになりました。しかし、その一方で、環境問題、資源 問題など、国・地域の境界を越えた人類共通の深刻な課題に直面しています。

これら諸問題の解決には、国家レベルの対応のみならず、人類が幅広く英知を結集し、多面的な取り組みを行い、積極的にその役割を担うことが重要です。とりわけ、科学技術には、人類が直面する諸問題の解決に大きく寄与することが求められています。

キヤノン財団は、時代の要請に従い、科学技術をはじめとするさまざまな学術および文化の研究、 事業、教育を行う団体・個人に対し幅広い支援を行い、人類社会の持続的な繁栄と人類の幸福に 貢献していきたいと念じております。

2008年12月1日

設立者
キャノン株式会社代表取締役会長

ビジョン/ミッション

ビジョン

科学技術の将来と未来社会の洞察をもとにした新たな価値創造への挑戦が 尊重される社会を実現することにより、人類の幸福と社会の繁栄に貢献します

ミッション

未来社会のありたい姿を描き、その実現のために今までにない独創的な研究課題に挑戦する科学技術者を支援していきます

財団概要

	概要
名称	一般財団法人キヤノン財団
設立	2008年12月1日
基本財産	10億円
 所在地	〒146-8501 東京都大田区下丸子 3-30-2
Tel.	03-3757-6573
Fax	03-3757-0674
URL	https://jp.foundation.canon

目的

当財団は、科学技術をはじめとする幅広い学術および文化の領域における研究、事業、教育等に対して助成・支援を行うことによって、学術および文化の振興発展を図り、もって広く国民生活の向上と人類社会の繁栄に貢献することを目的とします。

沿革

当財団は、キヤノン株式会社創業70周年を記念して、2008年12月1日に一般財団法人キヤノン財団として同社により設立されました。

2009年5月より2つの研究助成プログラムを設定し、研究助成公募を開始しました。これまでに12回の研究公募を行い、計192件が採択されました。

評議員•理事•監事 一覧

		評議員	(2022年4月1日現在・五十音順)
役職	氏名	現職	
評議員会議長	御手洗 冨士夫	キヤノン株式会社 代表取締役会長兼社	·長 CEO
評議員	岩沙 弘道	三井不動産株式会社 代表取締役会長	
評議員	佐藤 康博	みずほフィナンシャルグループ 取締役	
評議員	広瀬 勝貞	大分県知事	
評議員	渡辺 捷昭	国立研究開発法人科学技術振興機構 顧 トヨタ自動車株式会社 前代表取締役社	1. 2

		理事·監事	(2022年4月1日現在・五十音順)
役職	氏名	現職	
理事長	吉川 弘之	日本学士院会員 東京/大阪国際工科 東京大学名誉教授·元総長	專門職大学 学長
理事	安西 祐一郎	独立行政法人日本学術振興会 顧問 慶應義塾大学名誉教授·元慶應義塾長	
理事	伊賀 健一	東京工業大学名誉教授・元学長	
理事	垣添忠生	日本学士院会員 公益財団法人日本対が 国立がんセンター名誉総長	がん協会 会長
理事	田中 稔三	キヤノン株式会社 代表取締役副社長(CFO
理事	本間 利夫	キヤノン株式会社 代表取締役副社長	СТО
監事	大江 忠	弁護士	